3.1413 \(\int \frac {1}{x^7 (2+x^6)^{3/2}} \, dx\)

Optimal. Leaf size=55 \[ -\frac {1}{12 x^6 \sqrt {x^6+2}}-\frac {1}{8 \sqrt {x^6+2}}+\frac {\tanh ^{-1}\left (\frac {\sqrt {x^6+2}}{\sqrt {2}}\right )}{8 \sqrt {2}} \]

[Out]

1/16*arctanh(1/2*(x^6+2)^(1/2)*2^(1/2))*2^(1/2)-1/8/(x^6+2)^(1/2)-1/12/x^6/(x^6+2)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.02, antiderivative size = 58, normalized size of antiderivative = 1.05, number of steps used = 5, number of rules used = 4, integrand size = 13, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.308, Rules used = {266, 51, 63, 207} \[ -\frac {\sqrt {x^6+2}}{8 x^6}+\frac {1}{6 x^6 \sqrt {x^6+2}}+\frac {\tanh ^{-1}\left (\frac {\sqrt {x^6+2}}{\sqrt {2}}\right )}{8 \sqrt {2}} \]

Antiderivative was successfully verified.

[In]

Int[1/(x^7*(2 + x^6)^(3/2)),x]

[Out]

1/(6*x^6*Sqrt[2 + x^6]) - Sqrt[2 + x^6]/(8*x^6) + ArcTanh[Sqrt[2 + x^6]/Sqrt[2]]/(8*Sqrt[2])

Rule 51

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*(c + d*x)^(n + 1
))/((b*c - a*d)*(m + 1)), x] - Dist[(d*(m + n + 2))/((b*c - a*d)*(m + 1)), Int[(a + b*x)^(m + 1)*(c + d*x)^n,
x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && LtQ[m, -1] &&  !(LtQ[n, -1] && (EqQ[a, 0] || (NeQ[
c, 0] && LtQ[m - n, 0] && IntegerQ[n]))) && IntLinearQ[a, b, c, d, m, n, x]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 207

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTanh[(Rt[b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && NegQ[a/b] && (LtQ[a, 0] || GtQ[b, 0])

Rule 266

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[1/n, Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(a
+ b*x)^p, x], x, x^n], x] /; FreeQ[{a, b, m, n, p}, x] && IntegerQ[Simplify[(m + 1)/n]]

Rubi steps

\begin {align*} \int \frac {1}{x^7 \left (2+x^6\right )^{3/2}} \, dx &=\frac {1}{6} \operatorname {Subst}\left (\int \frac {1}{x^2 (2+x)^{3/2}} \, dx,x,x^6\right )\\ &=\frac {1}{6 x^6 \sqrt {2+x^6}}+\frac {1}{4} \operatorname {Subst}\left (\int \frac {1}{x^2 \sqrt {2+x}} \, dx,x,x^6\right )\\ &=\frac {1}{6 x^6 \sqrt {2+x^6}}-\frac {\sqrt {2+x^6}}{8 x^6}-\frac {1}{16} \operatorname {Subst}\left (\int \frac {1}{x \sqrt {2+x}} \, dx,x,x^6\right )\\ &=\frac {1}{6 x^6 \sqrt {2+x^6}}-\frac {\sqrt {2+x^6}}{8 x^6}-\frac {1}{8} \operatorname {Subst}\left (\int \frac {1}{-2+x^2} \, dx,x,\sqrt {2+x^6}\right )\\ &=\frac {1}{6 x^6 \sqrt {2+x^6}}-\frac {\sqrt {2+x^6}}{8 x^6}+\frac {\tanh ^{-1}\left (\frac {\sqrt {2+x^6}}{\sqrt {2}}\right )}{8 \sqrt {2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 0.01, size = 30, normalized size = 0.55 \[ -\frac {\, _2F_1\left (-\frac {1}{2},2;\frac {1}{2};\frac {x^6}{2}+1\right )}{12 \sqrt {x^6+2}} \]

Antiderivative was successfully verified.

[In]

Integrate[1/(x^7*(2 + x^6)^(3/2)),x]

[Out]

-1/12*Hypergeometric2F1[-1/2, 2, 1/2, 1 + x^6/2]/Sqrt[2 + x^6]

________________________________________________________________________________________

fricas [A]  time = 0.75, size = 66, normalized size = 1.20 \[ \frac {3 \, \sqrt {2} {\left (x^{12} + 2 \, x^{6}\right )} \log \left (\frac {x^{6} + 2 \, \sqrt {2} \sqrt {x^{6} + 2} + 4}{x^{6}}\right ) - 4 \, {\left (3 \, x^{6} + 2\right )} \sqrt {x^{6} + 2}}{96 \, {\left (x^{12} + 2 \, x^{6}\right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^7/(x^6+2)^(3/2),x, algorithm="fricas")

[Out]

1/96*(3*sqrt(2)*(x^12 + 2*x^6)*log((x^6 + 2*sqrt(2)*sqrt(x^6 + 2) + 4)/x^6) - 4*(3*x^6 + 2)*sqrt(x^6 + 2))/(x^
12 + 2*x^6)

________________________________________________________________________________________

giac [A]  time = 0.17, size = 63, normalized size = 1.15 \[ -\frac {1}{32} \, \sqrt {2} \log \left (-\frac {\sqrt {2} - \sqrt {x^{6} + 2}}{\sqrt {2} + \sqrt {x^{6} + 2}}\right ) - \frac {3 \, x^{6} + 2}{24 \, {\left ({\left (x^{6} + 2\right )}^{\frac {3}{2}} - 2 \, \sqrt {x^{6} + 2}\right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^7/(x^6+2)^(3/2),x, algorithm="giac")

[Out]

-1/32*sqrt(2)*log(-(sqrt(2) - sqrt(x^6 + 2))/(sqrt(2) + sqrt(x^6 + 2))) - 1/24*(3*x^6 + 2)/((x^6 + 2)^(3/2) -
2*sqrt(x^6 + 2))

________________________________________________________________________________________

maple [A]  time = 0.02, size = 46, normalized size = 0.84 \[ -\frac {\sqrt {2}\, \ln \left (\frac {\sqrt {x^{6}+2}-\sqrt {2}}{\sqrt {x^{6}}}\right )}{16}-\frac {3 x^{6}+2}{24 \sqrt {x^{6}+2}\, x^{6}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/x^7/(x^6+2)^(3/2),x)

[Out]

-1/24*(3*x^6+2)/x^6/(x^6+2)^(1/2)-1/16*2^(1/2)*ln(((x^6+2)^(1/2)-2^(1/2))/(x^6)^(1/2))

________________________________________________________________________________________

maxima [A]  time = 2.39, size = 63, normalized size = 1.15 \[ -\frac {1}{32} \, \sqrt {2} \log \left (-\frac {\sqrt {2} - \sqrt {x^{6} + 2}}{\sqrt {2} + \sqrt {x^{6} + 2}}\right ) - \frac {3 \, x^{6} + 2}{24 \, {\left ({\left (x^{6} + 2\right )}^{\frac {3}{2}} - 2 \, \sqrt {x^{6} + 2}\right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^7/(x^6+2)^(3/2),x, algorithm="maxima")

[Out]

-1/32*sqrt(2)*log(-(sqrt(2) - sqrt(x^6 + 2))/(sqrt(2) + sqrt(x^6 + 2))) - 1/24*(3*x^6 + 2)/((x^6 + 2)^(3/2) -
2*sqrt(x^6 + 2))

________________________________________________________________________________________

mupad [B]  time = 1.30, size = 40, normalized size = 0.73 \[ \frac {\sqrt {2}\,\mathrm {atanh}\left (\frac {\sqrt {2}\,\sqrt {x^6+2}}{2}\right )}{16}-\frac {1}{8\,\sqrt {x^6+2}}-\frac {1}{12\,x^6\,\sqrt {x^6+2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(x^7*(x^6 + 2)^(3/2)),x)

[Out]

(2^(1/2)*atanh((2^(1/2)*(x^6 + 2)^(1/2))/2))/16 - 1/(8*(x^6 + 2)^(1/2)) - 1/(12*x^6*(x^6 + 2)^(1/2))

________________________________________________________________________________________

sympy [A]  time = 2.84, size = 49, normalized size = 0.89 \[ \frac {\sqrt {2} \operatorname {asinh}{\left (\frac {\sqrt {2}}{x^{3}} \right )}}{16} - \frac {1}{8 x^{3} \sqrt {1 + \frac {2}{x^{6}}}} - \frac {1}{12 x^{9} \sqrt {1 + \frac {2}{x^{6}}}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x**7/(x**6+2)**(3/2),x)

[Out]

sqrt(2)*asinh(sqrt(2)/x**3)/16 - 1/(8*x**3*sqrt(1 + 2/x**6)) - 1/(12*x**9*sqrt(1 + 2/x**6))

________________________________________________________________________________________